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A technique for background prediction using data, but maintaining a closed signal box is described.
The result is extended to two background sources. Conditions on the applicability under correlated

cuts are described.

PACS numbers:

In this paper we describe a bifurcation analysis pro-
cedure for data driven background prediction under the
conditions of a blinded signal box. The procedure uses
the application of inverse cuts to properly measure the
veto power of the different sets of cuts while not opening
the signal box. This technique was first developed for a
single background source in the stopped K experiments
E787 and E949 at Brookhaven [? |. The work in this pa-
per was inspired by the use of the bifurcation technique
in the E391 experiment [? ].

We begin with a derivation of the bifurcation analysis
in the case of one background source and uncorrelated
cuts. We then extend this to two background sources and
a simple model of correlation between cuts. We cover the
various derivations with a fair amount of algebraic detail.
Throughout this paper the method will be applied to a
toy model of a background prediction. We utilize the
Mathematica software package to simulate this system

7]

ONE BACKGROUND CASE

We begin discussing this method in the case of a sin-
gle background source. Here a collection of setup cuts
have been applied which eliminate all other sources of
background. We then want to know the amount of back-
ground in the signal region when we apply the cuts A
and B, which we refer to as the bifurcation cuts. The
number of events we observe will be determined by the
number of events before applying the cuts A and B (after
applying the setup cuts) and the cut survival probability
(CSP).

Nixg = NoP(AB) (1)

If we consider events to lie in a multi-dimensional space
with a dimension corresponding to every variable on
which we can cut. Our set of cuts defines a multidi-
mensional signal box which we wish to keep blind. If two
cuts show no correlation in the events that they cut, this
implies that these two cuts are orthogonal in this space.
A diagram of this situation is shown in Figure ?7. The
CSP can then be decomposed into P(AB) = P(A)P(B).

Niyg = NoP(A)P(B) (2)

This can be expanded into

N2P(A)P(B)P(A)P(B)

NoP(MP(B) ®)

kag =

Then we can calculate this from data based on the num-
ber of observed events in the signal box under the differ-
ent cut conditions.

Noag = NoP(A)P(B) (4)
Nap = NoP(B)P(A) (5)
Nag = NoP(A)P(B) (6)

Where N 4 g is the number of background events observed
with the application of cut A and the inverse of cut B.
N i is the observed background events with the inverse
of cut A and cut B applied. Njz is the count when the in-
verse of both A and B are applied. All of these values are
outside the signal box defined in the multi-dimensional
cut space allowing us to predict the background without
opening the box.

kag = (7)
The procedure goes as follows. First, apply setup cuts to
the data, the number of events in the signal box is Nj.
The setup cuts should remove any background sources
other than the ones that we are studying. We then apply
the group of cuts A while requiring that events don’t
pass the set of cuts B. By applying the inverse of B,
we are looking at events which are outside the signal box
in the multidimensional space. We count the number of
events which pass these sets of cuts, N, 5. We then do
the same procedure in reverse applying the set of cuts B
and the inverse of A to find Nj5. Finally, we apply the
inverse of both cuts A and B to find Nz5. These values
are combined to produce the background prediction.

THE MODEL

Each event consists of four variables. Two kinematic
variables, p and z which are used to describe the signal
region and two cut variables, a and b which will be used
to define the cuts. All of these variables range from 0 to
1.
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FIG. 1: Schematic of background distribution in the cut
space.

We define 2 different types of events: background 1
and background 2. The distribution of each variable for
the two background types is shown in Table 77.
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TABLE I: Default variables for each event type in the
Toy Model.

We define our cuts on variables a and b as

A=(a>05) 8)
=(b>0.5) (9)

A and B are true or false statements. If they are false the
event is cut. With the cut points defined, we can then cal-
culate the cut survival probability (CSP) for each event
type which we represent as P(A) or P(B). In this toy
model the CSP’s can be calculated analytically because
we know the underlying distributions. These values are
shown in Table 77.

One Background in the Toy Model

For this section we discuss the case of a single signif-
icant background. Our background prediction is given

Event Type |P(A)|P(B)
Background 1| 0.5 | 0.25
Background 2| 0.25 | 0.5

TABLE II: Cut survival probabilities for each event
type in the Toy Model.

No 2236 + 47
Nyp 831 £29
Nip 280 £ 17
Nip 869 £ 29
Predicted Background|267.8 4+ 20.6
Observed Background | 256 + 16

TABLE III: Single background study for the Toy Model
with only Background 1.

by Eqn ??. We generated 1 x 10* Background 1 events
over the whole range of kinematic variables. This leaves
us with ~ 2200 background events in the signal region
before applying cuts A and B. In Table ??, we show the
observed number of events for each combination of cuts,
the predicted background, and the observed background
after applying both cut A and B. The predicted back-
ground of 267.8 £ 20.6 agrees well with the 256 £ 16 ob-
served background events.

TWO BACKGROUND CASE

Derivation

The previous derivation applied in the case of a single
background source. However, if the background is made
up of two different background sources, Ny = Ny + Na,
which have different cut survival probabilities then it is
not correct. If that is the case then

Nipkg = N1 P1(A)Pi(B) + NoPs(A)P2(B) (10)
Nap = NiP(A)P(B) + NoPy(A)Py(B) (11)
Njip = N1Pi(B)Pi(A) + NaPy(B)Py(A) (12)
Nip = N1Pi(A)Pi(B) + N2 P2 (A) P2(B) (13)

Then our previous calculation of the background has
a cross term introduced. We wish to find the correction
to the one background solution. We begin by substitut-
ing the above definitions into the solution for the one
background case, Eqn ?7.

NapNip _ 1
Nip Nig
[N1 Py (B)Pi(A) + NoPo(B)Py(A)]

[Nlpl (A)P1 (B) + NQPQ(A)PQ(B)} X

(14)



We can expand the numerator into

NagNap = NiPi(A)P(A)Pi(B)Py(B)
+ NiN2 [P (A)Py(A) Py (B)Py(B)
+ P2(A)P1(A)Py(B)Py(B)]
+ N3 Py (A) Po(A) Py(B) Py(B).

53

(15)

e

We multiply Nypie by N5 to allow us to find the dif-
ference of Eqn. 77 and Npg.

kagNAB = [N1P1<A)P1(B) + NQPQ A)PQ(B)] X
[N1P1(A) Py
= NP (A)P,

— Py(A)P1(A)Py(B)Py(B)

The cross term vanishes if one of the following condi-
tions are met

1. Pi(A) or P»(A) = 0 and P(B) or P»(B) = 0 In
this case each of cuts completely eliminate one of
the background sources. However, this condition
implies that N5 is zero which means the correc-
tion term is poorly defined.

2. Pi(A) = Py(A) and P1(B) = Py(B) In this case
for the purposes of the cuts, the two background
sources are the same.

3. Ny = 0 or Ny = 0 Here there is only one back-
ground source in the sample.

We can simplify the cross term by rewriting the CSP’s
of the inverse cuts in terms of the CSP’s of the cuts,
P;(A) =1 — P;(A). Each element of the cross term has

the same structure which can be expanded to

P;(A)P;(A)Pi(B)Py(B) = P(A)Py(B)(1 —
(1— Py(B))

= P;(A)Py(B)(1 — P;(A)

Pj(A))x

= Pi(A)Px(B)
— Pi(A)P;(A)Py(B)
— Pi(A)Py(B)Py(B)
+ P;(A)P;(A)Py(B)P,(B)

Summing the elements of the cross term cancels out
everything except the terms with two CSP’s.

= kag

+

v (NiN2(Pi(A) Po(B) + Po(A) Pi(B)
AB

— Pi(A)P1(B) — P2(A) P2(B))

N1N3(Po(A) — Pi(A))(P2(B) — Pi(B)

= kag -

Nag
(19)
We can further simplify the cross term by defining
AA = PQ(A) — Pl(A) and AB = PQ(B) — Pl(B)
NapNaip | NiN2
Npke = + AsAp (20)
® Nap Njp

It is important to note that the correction term is not
the contribution of a particular source to the background
prediction.

Properties of the Two Background Solution

This solution has the reasonable property that it is
symmetric with respect to the definitions of the cuts A
and B and the backgrounds 1 and 2.

The correction term can be either positive or negative.
However, the total Ny, will not be negative. The cor-
rection term will have it’s maximum negative value when
Ajg=1land Ag=—-1or Ay =—1and Ag = 1. Under
these conditions, Nzg = 0 and Ny, is undefined. We
therefore want to study Npkg's behavior as we approach
this limit. We begin by setting Ap = —1 and studying
the limit as A4 — 1.

The condition that Ag = —1 sets what values the
CSP’s of the B can take.

P(B) = Py(B) = 0 (21)
Py(B) = Pi(B) =1 (22)



Substituting these values into Eqns. ?7-77, we find

Nag = NaPa(A), (23)
Nip = NiPi(A) = Ni(1 - Pi(A)), (24)
Njip = NoPy(A) = No(1 — Po(A)). (25)

We then substitute these values into Equation 77 and
sum the two terms

Ni(Po(A) — P(A)Pi(A) — Po(A) + Pi(A))
1— P (A)

NP (A)(1 = Py(A))

a 1— P (A)

Npkeg =

= N, Py(A).
(26)

As Ay — 1, Pi(A) — 0. Therefore the Nykg goes to
0. This indicates that Nk, never has a non-physical
negative value.

Interpretation of Two Background Solution

It is counterintuitive that two backgrounds cannot be
combined simply. This can best be understood as the
second background introducing an implicit correlation.

Let’s consider the extreme case of dividing the original
background in two , one background where P(A4) = 1
and the other with P(A) = 0. This means Ay = +1.
Whether this changes the result depends on the value of
Ap. If Ag # 0 then there is a correction to the original
prediction. The fact that Ag # 0 implies there is already
a correlation between cut A and cut B.

If we instead consider two backgrounds which each in-
dividually have no correlation between cut A and cut B,
but do have different cut survival probabilities combin-
ing them introduces a correlation. If P;(A) = 0.75 and
Py (B) = 0.75, while P(A) = 0.25 and P»(B) = 0.25
then the resulting combination of the two backgrounds
will have a correlation such that events which survive cut
A are likely to survive cut B, while events don’t survive
cut A are likely to not survive cut B. Therefore there is a
correlation, even though the individual backgrounds are
uncorrelated.

It is important to note that values of Ny, No, A 4, and
Ap are not directly accessible in data without opening
the signal box. There are two options either derive these
values from Monte Carlo or from other regions in signal
space. N; and Ny generally will require some alterna-
tive way of predicting one of the backgrounds and the
value of Ny, the total number of background after setup
cuts. This then raises the question, does determining Ny
bias the analysis. From Ny and the other observed back-
ground numbers, N5, Nip, and Njpa, it is possible to

effectively open the box and count Npk,. Determining
A4 and Apg also requires additional input. Their values
can be derived from either Monte Carlo or data outside
the signal region.

Two Background Toy Model

In our toy model, we can study the effect of multiple
background sources by varying the relative strength of
a second background. We begin by calculating with the
false assumption that there is a single background mode.
We vary the relative admixture of Background 2. The
total number of events, N; + Na, was held constant at
2 x 10%. The discrepancy between the prediction and
the observed background increases as the the number of
background events from the second source increases.

Secondary Background Correction

We now apply the correction term to the background
prediction (Eqn ??). In the case of this toy model, we
know the values of N7 and N> because we have set them.
In a real analysis, it would be necessary to determine
these values through either Monte Carlo studies or stud-
ies of different signal regions which are then extrapolated
into the signal box. The differences in the cut probabili-
ties, A4 and Apg, also need to be determined from out-
side sources. In this model Ay = —25% and Ag = 25%.
Since the probability differences are of opposite signs the
correction factor is negative and reduces the predicted
background.

In Figure 7?7, we show the results of keeping the to-
tal number of background events the same while increas-
ing the fraction of Background 2 events. Here only the
predicted background without correction increases, while
the observed and corrected backgrounds remain rela-
tively flat.

CUT CORRELATION

In the derivation of both the one and two background
cases, we have assumed that the cuts A and B are un-
correlated. Of course, in real applications, it is unlikely
to find two cuts which are perfectly uncorrelated. We
would therefore like to find some general figure of merit
to determine how the correlation of the introduces errors
into the background prediction.

Impact of Cut Correlation

There are a variety of general measures of correlation
between variables, such as the statistical correlation, but
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FIG. 2: Predicted and observed background for
different admixtures of a Background 2. Squares are
predicted background (without second background
correction), triangles are the observed background in
data, diamonds are the corrected prediction. The
golden triangles are the value of the two background
correction. The x-axis is the number of generated
Background 2 events, the total number of events,
N1 + N,, was held constant at 2 x 10%.

without a model of how the cuts are correlated it is diffi-
cult to derive a correction to the background prediction.
We describe a case where the cuts have a weak linear
correlation to establish the impact on the background
prediction. In this model the CSP’s of each cut have
a small difference in value when the other cut applies.
Since the cuts are correlated, we must always specify the
condition of the other cut when quoting a cut’s survival
probability.
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FIG. 3: Cut space with correlated cuts.

We begin by specifying the background values in terms
of the CSP’s, which now specify the dependance on both
cut conditions.

Nig = NoP(A|B)P(B) = NeP(A)P(B|A)  (27)
N5 = NoP(A|B)P(B) = NoP(A)P(B|A)  (28)
Ny = NoP(A|B)P(B) = NeP(A)P(BIA)  (29)
Nig = NoP(4|B)PB) = NgP(A)PB|A)  (30)

We proceed in the same fashion as for the two back-
ground case and substitute these definitions into the solu-
tion (Equation 7) for the single background uncorrelated
case.

_ N3P(A|B)P(B)P(A|B)P(B)
a NoP(A|B)P(B)

(31)

We are interested in the case where the correlations
are small, so we define

P(A|B) = P(A|B) — ¢ (32)
P(A|B) = P(A|B) + (33)
P(B|A) = P(B|A) — 6 (34)
P(B|A) = P(B|A) + 6 (35)

The corrections € and § should be small. What we mean
by small will be defined at the end of the derivation by
what values are necessary for the corrections which are
first order in € and § to be negligible. We substitute these
definitions into Equation 31.

NapNap _ NoPAIB)(PAIB) —OP(B) 40
N*B P(A|B) +e€

NapNap _ No(PAIBIP(B) —cP(B) o
Nag L+ P(A|B)

If we assume the € term in the denominator are small
we expand this result as

NagNap (No(P(A|B)P(B) — eP(B))))
Nas
€ e
(= P * pramp O
(38)

Multiplying this out and keeping the second order terms
of € gives equation

NagNas P(A|B)P(B)
—= 2= = NgP(A|B)P(B) — eNyg(P(B _
Naig 0P(A|B)P(B) — eNo(P(B) + BIAI)

P(A|B)P(B)
2N, P(B) —
FEN ey T pame
(39)
The first term with no e factors is Nygy. The condi-

tion for the correlations to have a negligible impact on

)



our background prediction is that the ¢ terms be much

NapNip
smaller than —A2—4L.
NapNas P(A|B)
Npgg = =22 + eNgP(B) (1 + =———
s Nip ( P(A|B)) (40)
2y P(B) P(A|B)

P Lt Pam)

These terms however, require opening the signal box
to know the correct values of the CSP’s. We can however
approximate these values with less knowledge, under the
assumption that the number of events in the signal box
is small.

Nap+ Ny
P(B) = TAB (41)
N,
P(B) ~ NAOB (42)
N
P(4|B) — ﬁ ~ Npred (43)
P(A|B) ~ Naz "~ Nyp

These approximations give us first order correction of
N,
pred ) ( 4 4)

Nip
We introduce a correlation between the a and b vari-
ables in Background 1. We add a term linearly dependent
on b to a, and then rescale a to keep it between 0 and 1
and to reduce the change in background due to just the
change in the average value of a.

1—Vi+€Dd
a= —
1+¢

The variable € is the knob we use to tune the correlation.
It is closely related to the variable e that is defined in
Equations 7?7 and 77 as is shown in Figure ?7?. For easier
comparison to that technote, we describe the variation of
the model in terms of the e variable.

1st Order = eNs5(1 4+

te0,1],b€0,1] (45)
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FIG. 4: The value of € (Eqn. ?7?) as a function of ¢
(Eqn. ?7).

We show the predicted and observed background in
Figure 7?7. As € increases the background in data in-
creases, as the correlation increases the average value a,
while the predicted background decreases.

PUIBIP®)
P(AB?

P(A|B)P(B)
)
(46)
(P(B)
P(A|B)
In Figure 7?7, we show the prediction with C, added.
It improves the agreement for a fairly wide range of e.
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FIG. 5: Predicted and observed background for
different levels of correlation between a and b. Triangles
are data background, squares are predicted, and
diamonds are predicted plus second order € correction
(Eqn. ??). The x-axis is €.
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FIG. 6: Predicted and observed background for
different levels of correlation between a and b. Triangles
are data background, squares are predicted, and
diamonds are predicted plus practical e correction (Eqn.
?7?). The x-axis is €.

DISCUSSION

The bifurcation analysis technique allows us to produce
data driven background predictions while still maintain-
ing a blind analysis. In this paper we have shown how to



extend the bifurcation analysis to the case of two back-
ground sources and correlated cuts. The primary pur-
pose of both of these is to estimate errors on the one
background, uncorrelated cut analysis.

The corrections for a second background source is ef-
fective for any level of secondary background. It does
require information beyond which is available directly
from a blind analysis. It requires a combination of Monte
Carlo information about the relative strengths of the two
backgrounds and how the cut survival probabilities vary
between the two backgrounds. It also requires knowledge
of Ny, the number of events in the signal box after the
setup cuts.

Correlations between the two cuts cannot be handled
as easily. Even when the correlation between cuts is lin-
ear, the effects on the background prediction are non-
linear. Therefore, special care must be taken when se-
lecting the cuts for the bifurcation analysis to avoid cor-
relation.

One particular aspect of the impact of the prediction
on the cut correlation is it’s dependance on the value of
Njy. This leads to two competing forces in optimizing the
division of cuts into the setup cuts and the bifurcation
cuts. From the perspective of minimizing statistical er-
ror in the bifurcation prediction, one would like a large
value for Ny with powerful cuts for cut A and B, so that
the statistical errors on the terms of Eqn. 7?7 are small.
On the other hand, a large Ny means the prediction is
sensitive to small correlations between the cuts.
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